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Abstract. New web application development technologies such as Ajax, Flex 

or Silverlight result in so-called Rich Internet Applications (RIAs) that provide 

enhanced responsiveness, but introduce new challenges for crawling that cannot 

be addressed by the traditional crawlers. This paper describes a novel crawling 

technique for RIAs. The technique first generates an optimal crawling strategy 

for an anticipated model of the crawled RIA by aiming at discovering new 

states as quickly as possible. As the strategy is executed, if the discovered 

portion of the actual model of the application deviates from the anticipated 

model, the anticipated model and the strategy are updated to conform to the 

actual model. We compare the performance of our technique to a number of 

existing ones as well as depth-first and breadth-first crawling on some Ajax test 

applications. The results show that our technique has a better performance often 

with a faster rate of state discovery.  

Keywords: Rich Internet Applications, Crawling, Web Application Modeling. 

1   Introduction 

Web Applications have been used for nearly as long as the Web itself. In the 

formative years, a Web Application was an application running entirely on the server 

side, and which used a dynamically created web page rendered inside a classical web 

browser as a client. Following the model of static Web sites, these web applications 

used the usual GET and POST HTTP requests to communicate between the client and 

the server, and each response sent by the server was meant as a complete replacement 

of the currently displayed client side. These applications were not very user-friendly 

due to the lack of flexibility at the client side, but they were pretty similar to static 

web sites in terms of crawling (except for possible user inputs): it was sufficient to 

scan the current page to find out what the possible next states could be, and the 

current state was entirely defined by the last server response. Crawling these web 



applications was easy, and many commercial tools can do it, e.g. for the purpose of 

automated testing, usability assessment, security evaluation or simply content 

indexing. 

This situation was first modified with the widespread support in Web browsers for 

scripting languages such as JavaScript, and the ability given to these scripts by 

browsers to modify directly the current page (the current DOM). After this, it was no 

longer true that the state of the client could be inferred simply from the last server 

response, since script embedded in this response could have modified the state, 

perhaps based on user input. This new situation seriously impaired the ability of 

existing tools to truly crawl these applications. But it was the introduction of another 

possibility for these scripts that was a real challenge for crawlers: the ability for 

scripts to asynchronously exchange messages with the server (still using GET and 

POST commands) without having to reload the page entirely. This technique, most 

commonly used with Ajax, means that these Web Applications can really be seen as 

two programs running concurrently in the server and the browser, communicating by 

asynchronous message exchanges. We call these types of Web Applications “Rich 

Internet Applications” (RIAs). To the best of our knowledge, there are no tools today 

to efficiently and systematically crawl RIAs. Some academic tools have been 

developed [11,17] but the results are not entirely satisfactory yet. Some large 

commercial software do require crawling abilities, such as vulnerabilities scanners 

(e.g. see [3] for a recent survey of security scanners), but again their ability to really 

crawl RIAs is very limited in practice. 

It is important to note that the difficulties introduced by RIAs for crawling have a 

much deeper impact than preventing security testing tools to perform well. First, 

crawling is the basis for indexing, which is necessary for searching. Our inability to 

crawl RIAs means that these RIAs are not properly indexed by search engines, 

arguably one of the most important features of the Web.1 Second, because RIAs are 

often more user-friendly than simple sites and provide an enhanced experience for 

end-users, a growing number of web authoring tools automatically add RIA-type code 

(usually Ajax) into the produced site. So the problem extends much beyond advanced 

Web Applications. Even the most classical Web site, built without any programming 

ability by some content editor, might end up being non-crawlable and thus non-

searchable. This is clearly an important problem that must be addressed. This paper is 

a first step in this direction. For simplicity, we only consider Ajax based RIAs in the 

following, but the same concepts can be applied to other technologies. 

The paper is organized as follows: in Section 2, we provide a general overview of 

our crawling strategy. In Section 3, we give a high-level description of the set of 

algorithms we have developed for this purpose. In Section 4, we show how all of 

these algorithms are tied together to lead to our crawling strategy. In Section 5, we 

provide experimental results obtained with our prototype, compared with existing 

tools and other, simpler crawling strategies. Related works is reviewed in Section 6, 

and we conclude in Section 7 with some future research directions. 

                                                           
1 To observe the current RIA crawling capabilities of the search engines, we created various 

experimental RIAs, each with 64 states reachable via AJAX calls. To date, Google and 

Yahoo visited our applications: neither was able to explore beyond the initial state! 



2   Overview of Strategy 

The purpose of crawling a RIA is to infer automatically an accurate model of the 

application. We conceptualize the model of the application as a Finite State Machine. 

The states of the state machine are the distinct DOMs that can be reached on the client 

side and a transition is an event execution (e.g. any JavaScript event such as onClick, 

onMouseOver, onSubmit etc.) on the current DOM. To produce an accurate and 

useful model, the crawling strategy must satisfy certain requirements. First, the 

produced model must be complete. That is, the model must represent all reachable 

states and all transitions. In addition to the event being executed, the next state of a 

transition may depend on other data, such as user inputs and variable values. 

Therefore, building a complete model requires capturing all the states and all such 

events along with the relevant data. Second, the model must be built in a deterministic 

way. That is, crawling the application twice under the same conditions (including 

server-side data) should always produce the same model. Third, the model should be 

produced efficiently. By this, we mean that the model construction strategy should 

produce as much of the model as possible within the shortest amount of time. 

Crawling an application may take a very long time, and even can be infinite 

theoretically; thus it may not be practical or even feasible to wait until the crawling 

ends. In such a case, if the crawl is stopped before it is complete, the partial model 

produced should contain as much information as possible. 

Satisfying the completeness requirement is not too difficult on its own. There are 

several simple strategies that will achieve this. One must simply be careful not to 

overlook any of the intermediate states [4], even though most state-of-the-art crawling 

strategies fail to meet this requirement, usually on purpose since it is considered to 

take too much time. The determinism requirement is also not very difficult to achieve, 

although many RIAs may not easily provide the necessary uniform responses to the 

same requests. The efficiency requirement is obviously the most challenging one. 

Even the most simple-minded strategies, such as enumerating and executing one by 

one all possible orderings of events enabled at the state being explored, may satisfy 

the first two requirements, but not the efficiency requirement. Considering a single 

state with n enabled events, there are n! possible different orders for executing these 

events, so blindly executing events in every possible order is not efficient. However, 

note that this simple strategy makes no hypothesis about the application beforehand, 

so there is actually not much room for generating a more efficient strategy as such. 

To generate an efficient strategy, we use the following methodology which we call 

“model-based crawling”: 

 First, general hypotheses regarding the behavior of the application are elaborated. 

The idea is to assume that, in general, the application will usually behave in a 

certain way, described by the hypotheses. With these hypotheses, one can 

anticipate what the final model (or part of it) will be, if they are indeed valid. The 

crawling activity is thus morphed from a discovery activity (“what is the model?”) 

into a confirmation activity (“is the anticipated model correct?”). Note that the 

hypotheses do not need to be actually valid. 

 Once reasonable hypotheses have been specified, an efficient crawling strategy can 

be created based on these hypotheses. Without any assumptions about the behavior 

of the application, it is impossible to have a strategy that is expected to be efficient. 



But if one anticipates the behavior, then it becomes possible to draw an efficient 

strategy to confirm the hypothesis. In our case, we provide a crawling strategy that 

is in fact optimal for our hypotheses. 

 Finally, a strategy must also be established to reconcile the predicted model with 

the reality of the application that is crawled. Whenever the application’s behavior 

doesn’t conform to the hypotheses, some corrective actions must be taken to adapt 

the model and to update the crawling strategy. In our case, we always assume that 

the part of the application that has not yet been crawled will obey the initial set of 

hypotheses, and the crawling strategy is adapted accordingly. 

The event-based crawling strategy exposed in this paper follows this methodology. 

To form an anticipated model, we make following two hypotheses only:  

 H1: The events that are enabled at a state are pair-wise independent. That is at a 

state with a set {e1,e2,…, en} of n enabled events, executing a given subset of these 

events leads to the same state regardless of the order of execution.  

 H2: When an event ei is executed at state s, the set of events that are enabled at the 

reached state is the same as the events enabled at s except for ei.  

We believe that these hypotheses are usually reasonable for most of the web 

applications in the sense that executing different subsets of events is more likely to 

lead to new states, whereas executing a given subset of events in different orders is 

more likely to lead to the same state. More precisely, it is obviously not always the 

case that concurrently enabled events are independent of each other, and that 

executing an event will not enable new ones or disable existing ones. Still, it is 

reasonable to assume that, in general, the events that are concurrently enabled are 

“roughly” independents, as a whole. In fact, if a client state tends to have a large 

number of events, then it seems reasonable to expect that many of these events are 

independent of each other, and so even if the hypotheses are often violated for chosen 

pairs of events, they are usually verified overall. And of course, when this is not the 

case, the expected model and the corresponding strategy is updated without throwing 

away the whole strategy.  
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Fig. 1. Hypercube of dimension 4 

With these hypotheses, the expected model for a state with n enabled events is a 

hypercube of dimension n. There are 2
n 

possible subsets of n events and a hypercube 

is a partial order of all possible subsets ordered by inclusion. Figure 1 shows an 



example hypercube of dimension n = 4. In a hypercube of dimension n, each of the 2
n
 

states is characterized by a subset of n events executed to reach it. Each edge 

corresponds to a transition that is triggered by execution of one of the events. There 

are n! different paths from the bottom state to the top state. Each one of them 

represents an order of execution containing n events.  

Based on the hypercube hypothesis, a strategy should be generated. To satisfy our 

efficiency requirement, the strategy must aim at visiting each state in the expected 

model as soon as possible. Once each state has been visited, then the strategy 

completes the crawl by aiming at efficiently traversing every transition that has not 

yet been traversed. In the following section, we introduce an algorithm that generates 

an optimal strategy which completes crawling in (n choose (n/2))*⌈n/2⌉ paths instead 

of going over n! paths. What is more only (n choose (n/2)) of these paths are enough 

to visit all the states in the hypercube. Both numbers are optimal. 

Another important factor for the efficiency of the crawling algorithm is the choice 

of the state equivalence relation. Equivalence relation is used to determine whether a 

state should be regarded as being the same as another, already known. This avoids 

exploring the same state multiple times. Our crawling algorithm assumes that some 

appropriate equivalence relation is provided. Different equivalence relations can be 

employed depending on the purpose of model. For example, for security scanning, an 

equivalence relation that ignores text content of pages may be appropriate whereas for 

indexing the text must be taken into account. An in-depth discussion of this topic is 

beyond the scope of this paper, but it is important to note that the equivalence 

function we are working with is assumed to be a real equivalence relation (from the 

mathematical viewpoint) and that this function should at least be coherent with state 

transitions, that is, two equivalent states must at least have the same set of embedded 

URLs (an exception can be made if some specific parts of the page are ignored during 

the crawl, e.g. a part containing ads for example. URLs and events embedded into the 

ignored parts can also be ignored) and the same set of events. One obvious such 

equivalence relation is simple equality. Throughout this paper ≈ is used to denote the 

equivalence relation that is provided to the crawling algorithm. 

3   Minimal Transition Coverage (MTC) of a Hypercube 

In this section, we present an algorithm to find a minimal set of paths that traverse 

each transition in a given hypercube. We call such a set a Minimal Transition 

Coverage (MTC) of the hypercube. Since we also want to be able to visit each state of 

the hypercube as early as possible, we need more than just any MTC; we need one 

that will also reach all the states as fast as possible. For this reason, our MTC 

algorithm can be constrained by a set of disjoint chains of transitions given as input. 

Each chain of the constraint set will be included in one of the produced MTC chains. 

When the produced MTC is constrained with a minimal set of chains that visit each 

state in the hypercube, the resulting MTC is exactly what we are aiming for: a 

minimum number of paths containing every possible transition of the hypercube and 

including as a subset a minimum number of paths visiting every state. We then simply 

have to give priority to the paths visiting the states to obtain our strategy. 



In [5], it was stated that a Minimal Chain Decomposition (MCD) of a hypercube, 

which is the minimal set of paths visiting every state of the hypercube, could be used 

as part of a crawling strategy. Here, we use an MCD as a constraint for MTC to 

generate our strategy. First, we give a short review of the MCD for completeness. 

3.1   Minimal Chain Decomposition 

Since a hypercube represents a partially ordered set, a path in the hypercube consists 

of pair-wise comparable elements. A path is also called as a chain of the order. 

Finding a set of chains covering every element of the order is known as chain 

decomposition of the order. A minimal chain decomposition of the order is a chain 

decomposition containing the minimum number of chains (see [1] for an overview of 

the concepts). In 1950, Dilworth proved that the cardinality of any minimal chain 

decomposition is equal to the maximum number of pairwise incomparable elements 

of the order, also known as the width of the order [9]. For a hypercube of size n, the 

width is (n choose n/2). An algorithm that can be used for decomposing a hypercube 

is given in [8]. Below we present the algorithm as it is exposed in [12] (adapted to our 

hypercube definition). 

Definition (adapted from [12]): The Canonical Symmetric Chain Decomposition 

(CSCD) of a hypercube of dimension n is given by the following recursive definition: 

1. The CSCD of a hypercube of size 0 contains the single chain (Ø). 

2. For n ≥ 1, the CSCD of a hypercube of dimension n contains precisely the 

following chains: 

 For every chain A0 < … < Ak in the CSCD of a hypercube of dimension n – 1 

with k > 0, the CSCD of a hypercube of dimension n contains the chains: 

A0 < … < Ak < Ak ∪ {n} and 

                                    A0 ∪ {n} < … < Ak-1∪ {n}. 

 For every chain A0 of length 1 in the CSCD of a hypercube of dimension n - 1, 

the CSCD of a hypercube of dimension n contains the chain:  

                             A0 < A0 ∪ {n} 

3.2   MTC Algorithm 

In the rest of this paper, we represents a chain C as alternation of states and events in 

the form C = s1 - e1 - s2 - e2 - s3 - … - em - sm+1. Each chain starts and ends with a state. 

The first state in C is noted by first(C) and the last state in C is noted by last(C). Each 

event ei in C corresponds to a transition (si – ei – si+1) from si to si+1. The length of the 

chain C is defined to be the number of states in C and denoted as |C|. prefC(si) denotes 

the chain that is the prefix of C such that last(prefC(si)) is si. suffC(si) denotes the chain 

that is the suffix of C such that first(suffC(si)) is si. Two chains C1 and C2 can be 

concatenated if last(C1) = first(C2). The resulting chain is represented as C1+ C2. 

For a given hypercube of dimension n, we present an algorithm to generate an 

MTC in three stages. The algorithm allows MTC to be optionally constrained by a set 



(CC) of disjoint chains of the transitions. We call level 0 the bottom of hypercube, 

level n the top of the hypercube and level ⌊n/2⌋ middle of the hypercube. 

Upper Chains Stage: In this stage, a set of chains (CU) covering all the transitions 

above the middle of the hypercube is calculated. For each transition leaving a state at 

the middle level, a chain is constructed by extending the transition toward the top of 

the hypercube. Let U be the chain that is currently being constructed and s be last(U). 

Initially, U is a chain containing only the middle level state. Then we pick an 

unvisited transition (t = s - e - s') leaving s and attempt to extend U with t. If t is not 

part of any constraint chain then we can extend U with t. Otherwise t is included in a 

constraint chain C∈CC. There can be two cases,  

 If |U| = 1 or s is first(C)  extend U with suffC(s). 

 Otherwise we cannot use t to extend U. So, we mark t as not usable and we attempt 

to extend U by picking another unvisited transition. 

The extension of U continues until no transition can be found to extend it further. 

Lower Chains Stage: In this stage, a set of chains (CD) covering all the transitions 

below the middle level of the hypercube is calculated. This stage is simply the 

symmetric of the upper chains stage. 

Chain Combination Stage: In the final stage, the chains in CU and CD are combined 

into larger chains. Note that, when the hypercube has an odd dimension, the number 

of transitions entering a middle-level state is one less than the number of transitions 

leaving it. In that case, for some upper chains, we cannot find a lower chain to 

combine with. For this reason, in this stage we iterate over the lower chains and try to 

combine each with an upper chain. After all lower chains combined, any uncombined 

upper chains are simply added to the resulting set. Again the only consideration while 

combining a lower chain with an upper chain is to keep every constraint chain as it is. 

That is, if is a constrain chain C∈CC has a prefix in the lower half and a suffix in the 

upper half, then the lower chain D containing the prefix of C can only be combined 

with the upper chain U containing the suffix of C and vice versa.  

Note that, the number of chains in an MTC of a hypercube of size n equals (n 

choose (n/2))*⌈n/2⌉ which is the number of states in the middle level (or the width of 

the hypercube) multiplied by the number of transitions leaving each middle level 

state. 

4   Overall Strategy for Crawling RIAs 

There are two methods for reaching new client states while crawling a RIA. One is 

through making synchronous HTTP requests to the server via URLs embedded in the 

DOM. The other is executing events in the DOM. An overall strategy for crawling 

RIAs should be a mix of these two and possibly running them alternatingly. For lack 

of space, we do not ellaborate here on the traditional, URL crawling part of the 

strategy, nor on the way we alternate between URL crawling and event crawling (see 

[4] for some details), and focus on event-based crawling only. 

During URL-based crawling, whenever a page with a non-empty set of events is 

discovered, it is forwarded to the event based crawler for exploration. If such a state 

(also called as a base state) has n events, then the expected model we use to generate 



the crawling strategy is a hypercube of dimension n based on that state. To explore 

the states reachable from a base state s, a strategy Chains(s) that consists of a set of 

chains is generated. Let MTC(s) denote a set of MTC chains constrained by an MCD 

of the hypercube based on s. To generate the “initial” strategy, we use MTC(s) as a 

basis. Note that the chains in MTC(s) may not be executed in their original form 

because a chain in MTC(s) does not necessarily start at the base state s. To be able to 

begin executing events in a chain C∈MTC(s), we have to reach the state first(C). For 

this reason each C must be prepended with a (possibly empty) transfer chain, denoted 

T(first(C)), from the base state s to first(C). Any chain can be used as a transfer chain 

for C as long as it starts from the base state s and reaches first(C). Thus the initial 

event execution strategy for the hypercube based on state s will simply be the set 

Chains(s) = {C' = T(first(C))+C | C∈MTC(s)}. After, we begin exploration of the 

base state s, by executing the chains in Chains(s). Since we aim to reach every state 

first, we execute the chains that contain MCD chains first. 

Executing a chain simply means executing the events of the chain one after the 

other. After an event is executed, if the state reached is a new state then this state is 

scanned and the newly found URLs are added to the traditional crawler. Then, we 

need to check if the state reached has the expected characteristics. If it is not, the 

current strategy and expected model must be revised.  

The expected characteristics of a reached state are determined by the model 

hypotheses (in our case H1 and H2). H1 has two possible violations (non-mutually 

exclusive)  

 Unexpected Split: In this case, we are expecting to reach a state that has already 

been visited but the actual state reached is a new state. 

 Unexpected Merge: In this case, we unexpectedly reach a known state. 

H2 can also be violated in two ways (non- mutually exclusive) 

 Appearing Events: There are some enabled events that were not expected to be 

enabled at the reached state. 

 Disappearing Events: Some events that were expected to be enabled at the reached 

state are not enabled. 

When a violation occurs, the revision method creates a brand new strategy (still 

based on the original hypotheses) for the state causing violations and updates any 

chain in the existing strategy that is affected by the violations. As a result, the strategy 

will again be valid for the actual model of the application discovered so far. In the 

following, we give an outline (see Figure 2) and a high-level overview of the revision 

method, details can be found in [4]. 

Consider a hypercube based on state s1 and the strategy Chains(s1) currently used 

for s1. Let the current chain be C = s1 - e1 - s2 - … - si - ei - si+1 - … - sn in Chains(s1) 

and let si be the current state. According to C we execute the event ei at si. Let s' be the 

actual state reached after this execution.  

First we have to make sure that s' is a state that is in accordance with the expected 

model. What we expect s' to be depends on whether si+1 is a known state or not. si+1 is 

a known state if we executed a chain C'≠C in Chains(s1) such that prefC'(si+1) executes 

exactly the events {e1,e2,…,ei} in any order without any violations. If this is the case 

then we expect s' to be equivalent to si+1. Otherwise we expect s' to be a new state 

without any appearing/disappearing events. If the expectations are met, from now on 

we regard si+1 in the strategy as s'. 



If s' is as we expected, the current strategy is still valid but it can be revised by 

removing some redundant chains. This is possible when C is our first attempt to visit 

si+1 and it turns out that we had already been in s'. This is either because s' was 

reached through a base state different than s1 or s' was reached through s1 but the first 

time s' was reached there was an appearing/disappearing event violation. In either 

case, since s' has already been discovered, there must be an existing strategy to 

explore it. Hence all the chains having the prefix prefC(si+1) are redundant and can be 

removed from Chains(s1). 

                    

Fig. 2. Revising the Crawling Strategy after executing an event 

In case s' is not as expected, revision procedure checks for an alternative way to 

complete the remaining portion of C as much as possible. In order to do that, we first 

look for an alternative path among the remaining chains in Chains(s1) to reach the 

minimum indexed state sk (i < k < n) in suffC(s1) without traversing the problematic 

transition (si - ei - si+1). If a chain C'' has such a prefix then we can use that prefix to 

reach sk and execute suffC(sk) after that. That is, we add a new chain 

prefC''(sk)+suffC(sk) to the strategy. Note that if sk is the last state in C'' then to 

eliminate redundancy we can remove C'' from the strategy as it is covered completely 

in the newly added chain. Also we should remove C from the strategy as it is now 

handled by newly added chain. This revision should be applied not only to C but to 

any chain C' having the prefix prefC(si+1), since C' will face the same violation. 

After all affected chains are updated, we check if we need to generate a strategy for 

s'. If s' is a state that has been discovered before, then we do not have to do anything 

as we must have already generated a strategy for s' at the time it was first discovered. 

Otherwise, a strategy (Chains(s')) should be generated for a new hypercube based on 

s'. Note that, currently the only known way to reach s' is using chain prefC(si)+(si - ei - 

Procedure reviseStrategy 

Let C = s1 - e1 - s2- … - si – ei – si+1 - … - sn be the current chain 

  ei be the event that has just been executed in C 

  s' be the state reached by executing event ei at si 

 

If s' meets the expected model characteristics then 

- If the current model contains s such that s' ≈ s then 

- - remove from Chains(s1) all chains containing prefC(si+1); 

- stop procedure reviseStrategy 

 

Else // s' does not meet the expected model characteristics 

- For each C' in Chains(s1) such that prefC'(si+1) = prefC(si+1) 

- - Let sk be the first state of C' after si that belongs to another 

  chain C'' of Chains(s1) that does not include si-ei-si+1, if 

  any 

- - - add the chain prefC''(sk)+suffC'(sk) to Chains(s1); 

- - - remove C'' from Chains(s1) if sk is its last state 

- - remove C' from Chains(s1) 

- If this is the first time s' is visited, generate the crawling 

 strategy for s' based on the hypercube hypothesis, with 

 T(s') = prefC(si)+(si-ei-s') 



s'). For this reason, newly generated hypercube is actually an extension to the existing 

one and belongs to the same projection based on the state s1. Hence each chain in 

Chains(s') is added into Chains(s1) using prefC(si)+(si - ei - s') as a transfer chain to 

reach s'. 

5   Experimental Results 

To assess the efficiency of our crawling algorithm, we have implemented a prototype 

tool (see [4] for detatils).We present results showing the performance of our prototype 

compared with a prototype of major commercial software for testing web 

applications, an open source crawling tool for Ajax applications (Crawljax) [17] as 

well as pure breadth-first and depth-first crawling.  

To evalute a method, we first check if it achieves a complete crawl. For the ones 

that can crawl all the test applications completely, we record the total number of event 

executions and the total number of reloads required before discovering all the states 

and all the transitions separately. The collected data gives us the total number of event 

executions and reloads required to complete the crawl and an idea about how quickly 

a method is able to discover new states and transitions. 
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Fig. 3. Models of some test applications 

The results were obtained using six Ajax test applications. (See Figure 1 and 3 for 

the models). Five of them were developed by us and one is a publicly available test 

application. We designed the applications to reflect different characteristics of the 

web applications as well as some extreme cases like a perfect hypercube or a 

complete graph. The first application, called H4D, has the model of a 4 dimensional 

hypercube (16 states, 32 transitions). Since  hypercube is the expected model, this 

application is a best case for our strategy. The second application NH1 is an 

application (8 states, 12 transitions) which slightly deviates from the hypercube 



structure. The third and the fourth applications, NH2 (13 states, 15 transitions) and 

NH3 (24 states, 32 transitions), also deviate from the hypercube structure. The fifth 

application, PrevNext (9 states, 16 transitions) represents a model that is encountered 

in many Ajax applications. States of PrevNext are linked by previous and next events. 

The last application AjaxNews2 (8 states, 80 transitions) is a publicly available test 

site [11]. It is in the form of a news reader with 8 different articles. It allows users to 

browse articles by previous and next buttons as well as to go directly to an article via 

clicking titles listed on a menu.  

In an effort to minimize any influence that may be caused by considering events in 

a specific order, the events at each state are randomly ordered for each crawl. Also, 

each application is crawled 10 times with each method and the average of these 10 

crawls are used for comparison.  

Only depth-first, breadth-first and our algorithm successfully discovered all the 

states and all the transitions for all the applications. The commercial product protoype 

could not achieve a complete crawl for any of the applications. That is because it did 

not apply a specific strategy for crawling RIAs but blindly executed the events on a 

page once (in the sequence that they appear) without handling DOM changes which 

may add or remove events to the DOM. This is an example of a very naïve approach. 

Crawljax could crawl some completely but not most of them. (This is because 

Crawljax decides which events to execute at the current state using the difference 

between the current state and the previous state. That is, if a state transition leaves an 

HTML element with an attached event unchanged, then that event is not executed at 

the current state although it is still likely that this event could have led to a different 

state when executed in the current state). Table 1 shows the number of states 

discovered by each tool. 

Table 1.  Number of states discovered by Crawljax, Commercial software and our tool. 

 

Application Total States 
States Discovered by 

Commercial Crawljax Our Tool 

H4D 16 5 11 16 

NH1 8 4 8 8 

NH2 13 3 6 13 

NH3 24 3 14 24 

PrevNext 9 3 3 9 

For each test application and for each method, we present the number of transitions 

and reloads required to visit all the states (and traverse all the transitions) of the 

application. Figures 5a and 5b shows the total transitions and total reloads required 

for discovering states, respectively. Figure 6a and 6b shows the total transitions and 

total reloads required for traversing all transitions. For compactness we use boxplots 

that should be interpreted as follows. The top of vertical lines show the maximum 

number required to discover all the states (or all transitions).The lower edge of the 

box, the line in the box and the higher edge of the box indicate the number required to 

discover a quarter, half and 3 quarters of all the states (or transitions) in the 

application, respectively. We will use the position of this box and the middle line to 

                                                           
2 http://www.giannifrey.com/ajax/news.html 



assess whether a method is able to discover new states (or transitions) faster than 

others. 

 
Fig. 5. a. Transitions for state discovery                b. Reloads for state discovery 

As Figure 5a shows for H4D, NH1, NH2 and NH3 our method discovered all the 

states using the least number of transitions. For PrevNext, depth-first required slightly 

fewer transitions than ours and for AjaxNews breadth-first required significantly 

fewer transitions. Since the underlying model of AjaxNews is a complete graph, it is 

an optimal case for breadth-first. Hence it was not surprising to see breadth-first 

discovering all states using minimal amount of transitions. Looking at the figure to 

assess the rate of state discovery measured by the number of transitions, we can 

conclude that our method discovers states at a faster rate, except for AjaxNews. Even 

for AjaxNews, our algorithm discovered more than half of all the states at a rate 

comparable to breadth-first. 

Figure 5b contains the boxplots of the number of reloads required before 

discovering all states. It is clear that, our method uses, if not fewer, a comparable 

number of reloads to depth-first. For H4D and AjaxNews, our method uses 

significantly less reloads than the others. Looking at the figure to assess the rate of 

state discovery measured by the number of reloads, conclusion is that our method is 

able to discover states at higher rates than other mehtods except AjaxNews for which 

the rate is slightly lower than depth-first. 

Figure 6a contains the boxplots showing for each application and for each method 

the number transitions executed before having traversed all transitions. Comparing the 

number of transitions used to be able to traverse all the transitions (note that this is the 

number of transitions executed to complete the crawl), we see that for H4D and NH1 

our method is the best, for PrevNext depth-first and our method are even and for NH2 

and NH3 depth-first uses less transitions. For AjaxNews breadth-first uses the fewest 

transitions as expected. Comparing the rate of executing unexecuted transitions, for 

all the applications except PrevNext, our method uses fewer transitions to execute the 

majority of transitions. For PrevNext, depth-first has a slightly better rate but the rate 

is better for ours for more than half of the transitions before depth-first slightly takes 

over. Note also that, for AjaxNews our method has a significanty higher rate.  



Lastly, Figure 6b shows the number of reloads required before executing all 

transitions. Looking at the total number of reloads required to complete the crawl, for 

H4D, NH1 and AjaxNews our method was the best, for PrevNext depth-first and our 

method are even and for NH2 and NH3 depth-first used slightly fewer reloads. 

Comparing the rates, in order to execute the majority of the transitions, our method 

required fewer reloads for all the applications except PrevNext, for which depth-first 

and our algorithm have similar results. 

 
Fig. 6. a. Transitions for new transitions                b. Reloads for new transitions 

As an overall evaluation based on these results, we make following remarks. Our 

approach can extract a correct model of an application regardless of its model. In 

terms of the total number of transitions and reloads, our approach produced the most 

consistent results. That is, for all the cases it was either the best or very close to the 

best performance. It was never the worst. This is because, our approach tries to 

balance the good characteristics of the depth-first and breadth-first approaches. It 

tries, like depth-first, to maximize the chain length and thus reduce the number of 

reloads. Also it tries, like breadth-first, to cover the breadth of the application quickly. 

As we aimed, our strategy has a better rate of discovering new states and transitions. 

6   Related Work 

We survey here only research focusing on crawling RIAs, for general crawling see 

[2,7,13]. Although limited, several papers have been published in the area of crawling 

RIAs, mostly focusing on Ajax applications. For example [10,11,15] focus on 

crawling for the purpose of indexing and search. In [16], the aim is to make RIAs 

accessible to search engines that are not Ajax-friendly. In [18] focus is on regression 

testing of AJAX applications whereas [6] is concerned with security testing. 

The works that contain the modeling aspect seem to agree on representing models 

using finite state machines [14,15,17]. Usually states are defined using the DOM 

structure and the transitions are based on the events that lead to changes in the DOM 



[15,17]. In [14], however the states, as well as the events to consider, are abstracted 

by observing DOM changes in the given execution traces of the application. 

As a crawling strategy, [15] uses breadth-first crawl. In order to reduce the number 

of Ajax requests, whenever a specific Ajax request is made for the first time, the 

response from the server is cached. Later, if there is a need to call the same function 

with the same parameters for execution of some event, the cashed response is used 

instead of making an actual request. This assumes calling the same function with the 

same parameters always produces the same response regardless of the current state. 

Therefore it provides no guarantee to produce a correct model. In [17], a depth-first-

based method is described and implemented in Crawljax. As we have explained in 

Section 5, this method, too, is incapable of producing a complete model. 

7   Conclusion and Future Work 

In this paper, we have presented a general model-based strategy for crawling RIAs. 

Our solution aims at finding all the client states as soon as possible during the crawl 

but still eventually finds all the states. Experimental results show that our solution is 

correct and provides good results on a set of experimental sites: although our solution 

is not always the best one, it is the only one that works always and seems to always 

provide one of the best results in terms of efficiency. We believe that these are very 

encouraging results, but more must be done. We are currently working on the 

following enhancements: 

First, we must extend our experimental results to include large number of real 

RIAs. We believe that the results will in fact be even more favorable when crawling 

sites such as Facebook or Google Calendar, because these sites are not going to have 

the extreme patterns of our test sites, that sometimes favor one crawling technique 

over the other. 

Second, a possible criticism of our solution may be the computation of the strategy 

based on the hypercube hypothesis ahead of time. Because of the explosion of the size 

of a hypercube model, this approach may not be practical. Although we have already 

addressed this issue by generating chains one at a time, as required during the crawl, 

for simplicity we prefered to explain our solution by using pre-computed chains. We 

plan to explain the details of the on-the-fly chain generation technique in a separate 

contribution.  

A third enhancement would be to look at other models, beyond the hypercube. Our 

model-based crawling methodology can be used with any models, and we are 

currently investigating which other models could be efficiently used. 

Finally, a fourth direction would be to enhance the model with the notion of 

“important” states and events, that is, some states would have priority over others and 

some events would be more important to execute than others. Again, we believe that 

our model-based crawling strategy can be adjusted to deal with this situation. 
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